* Step 1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(incr(X)) -> incr(active(X))
            active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS)))
            active(oddNs()) -> mark(incr(pairNs()))
            active(pairNs()) -> mark(cons(0(),incr(oddNs())))
            active(s(X)) -> s(active(X))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            incr(mark(X)) -> mark(incr(X))
            incr(ok(X)) -> ok(incr(X))
            pair(X1,mark(X2)) -> mark(pair(X1,X2))
            pair(mark(X1),X2) -> mark(pair(X1,X2))
            pair(ok(X1),ok(X2)) -> ok(pair(X1,X2))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(incr(X)) -> incr(proper(X))
            proper(nil()) -> ok(nil())
            proper(oddNs()) -> ok(oddNs())
            proper(pairNs()) -> ok(pairNs())
            proper(s(X)) -> s(proper(X))
            repItems(mark(X)) -> mark(repItems(X))
            repItems(ok(X)) -> ok(repItems(X))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            tail(mark(X)) -> mark(tail(X))
            tail(ok(X)) -> ok(tail(X))
            take(X1,mark(X2)) -> mark(take(X1,X2))
            take(mark(X1),X2) -> mark(take(X1,X2))
            take(ok(X1),ok(X2)) -> ok(take(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
            zip(X1,mark(X2)) -> mark(zip(X1,X2))
            zip(mark(X1),X2) -> mark(zip(X1,X2))
            zip(ok(X1),ok(X2)) -> ok(zip(X1,X2))
        - Signature:
            {active/1,cons/2,incr/1,pair/2,proper/1,repItems/1,s/1,tail/1,take/2,top/1,zip/2} / {0/0,mark/1,nil/0
            ,oddNs/0,ok/1,pairNs/0}
        - Obligation:
             runtime complexity wrt. defined symbols {active,cons,incr,pair,proper,repItems,s,tail,take,top
            ,zip} and constructors {0,mark,nil,oddNs,ok,pairNs}
    + Applied Processor:
        Bounds {initialAutomaton = perSymbol, enrichment = match}
    + Details:
        The problem is match-bounded by 9.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 1
          0_1() -> 20
          0_2() -> 35
          0_3() -> 54
          0_4() -> 63
          0_5() -> 81
          0_6() -> 105
          active_0(1) -> 2
          active_0(5) -> 2
          active_0(6) -> 2
          active_0(7) -> 2
          active_0(8) -> 2
          active_0(10) -> 2
          active_1(1) -> 30
          active_1(5) -> 30
          active_1(6) -> 30
          active_1(7) -> 30
          active_1(8) -> 30
          active_1(10) -> 30
          active_2(19) -> 32
          active_2(20) -> 32
          active_2(22) -> 32
          active_3(44) -> 43
          active_4(34) -> 52
          active_4(35) -> 60
          active_4(42) -> 60
          active_4(58) -> 59
          active_5(51) -> 61
          active_5(54) -> 68
          active_5(80) -> 67
          active_6(63) -> 88
          active_6(78) -> 72
          active_6(86) -> 87
          active_7(81) -> 98
          active_7(85) -> 89
          active_7(110) -> 97
          active_8(104) -> 112
          active_8(105) -> 116
          active_8(113) -> 114
          active_9(108) -> 115
          cons_0(1,1) -> 3
          cons_0(1,5) -> 3
          cons_0(1,6) -> 3
          cons_0(1,7) -> 3
          cons_0(1,8) -> 3
          cons_0(1,10) -> 3
          cons_0(5,1) -> 3
          cons_0(5,5) -> 3
          cons_0(5,6) -> 3
          cons_0(5,7) -> 3
          cons_0(5,8) -> 3
          cons_0(5,10) -> 3
          cons_0(6,1) -> 3
          cons_0(6,5) -> 3
          cons_0(6,6) -> 3
          cons_0(6,7) -> 3
          cons_0(6,8) -> 3
          cons_0(6,10) -> 3
          cons_0(7,1) -> 3
          cons_0(7,5) -> 3
          cons_0(7,6) -> 3
          cons_0(7,7) -> 3
          cons_0(7,8) -> 3
          cons_0(7,10) -> 3
          cons_0(8,1) -> 3
          cons_0(8,5) -> 3
          cons_0(8,6) -> 3
          cons_0(8,7) -> 3
          cons_0(8,8) -> 3
          cons_0(8,10) -> 3
          cons_0(10,1) -> 3
          cons_0(10,5) -> 3
          cons_0(10,6) -> 3
          cons_0(10,7) -> 3
          cons_0(10,8) -> 3
          cons_0(10,10) -> 3
          cons_1(1,1) -> 23
          cons_1(1,5) -> 23
          cons_1(1,6) -> 23
          cons_1(1,7) -> 23
          cons_1(1,8) -> 23
          cons_1(1,10) -> 23
          cons_1(5,1) -> 23
          cons_1(5,5) -> 23
          cons_1(5,6) -> 23
          cons_1(5,7) -> 23
          cons_1(5,8) -> 23
          cons_1(5,10) -> 23
          cons_1(6,1) -> 23
          cons_1(6,5) -> 23
          cons_1(6,6) -> 23
          cons_1(6,7) -> 23
          cons_1(6,8) -> 23
          cons_1(6,10) -> 23
          cons_1(7,1) -> 23
          cons_1(7,5) -> 23
          cons_1(7,6) -> 23
          cons_1(7,7) -> 23
          cons_1(7,8) -> 23
          cons_1(7,10) -> 23
          cons_1(8,1) -> 23
          cons_1(8,5) -> 23
          cons_1(8,6) -> 23
          cons_1(8,7) -> 23
          cons_1(8,8) -> 23
          cons_1(8,10) -> 23
          cons_1(10,1) -> 23
          cons_1(10,5) -> 23
          cons_1(10,6) -> 23
          cons_1(10,7) -> 23
          cons_1(10,8) -> 23
          cons_1(10,10) -> 23
          cons_1(20,21) -> 18
          cons_2(35,36) -> 33
          cons_2(38,39) -> 32
          cons_3(35,45) -> 44
          cons_3(42,45) -> 44
          cons_3(46,47) -> 43
          cons_3(54,55) -> 53
          cons_4(54,57) -> 58
          cons_4(60,45) -> 43
          cons_4(63,64) -> 62
          cons_4(69,70) -> 61
          cons_5(63,73) -> 78
          cons_5(68,57) -> 59
          cons_5(74,75) -> 72
          cons_6(81,79) -> 85
          cons_6(83,84) -> 82
          cons_6(88,73) -> 72
          cons_7(91,92) -> 90
          cons_7(93,94) -> 87
          cons_7(98,79) -> 89
          cons_7(104,92) -> 110
          cons_8(99,100) -> 97
          cons_8(108,111) -> 113
          cons_8(112,92) -> 97
          cons_9(115,111) -> 114
          incr_0(1) -> 4
          incr_0(5) -> 4
          incr_0(6) -> 4
          incr_0(7) -> 4
          incr_0(8) -> 4
          incr_0(10) -> 4
          incr_1(1) -> 24
          incr_1(5) -> 24
          incr_1(6) -> 24
          incr_1(7) -> 24
          incr_1(8) -> 24
          incr_1(10) -> 24
          incr_1(19) -> 18
          incr_1(22) -> 21
          incr_2(34) -> 33
          incr_2(37) -> 36
          incr_2(40) -> 32
          incr_2(41) -> 39
          incr_3(34) -> 44
          incr_3(37) -> 45
          incr_3(48) -> 43
          incr_3(49) -> 47
          incr_3(50) -> 55
          incr_4(50) -> 57
          incr_4(51) -> 58
          incr_4(52) -> 43
          incr_4(53) -> 56
          incr_4(65) -> 64
          incr_4(71) -> 70
          incr_5(61) -> 59
          incr_5(62) -> 66
          incr_5(65) -> 73
          incr_5(76) -> 75
          incr_6(72) -> 67
          incr_6(73) -> 84
          incr_6(77) -> 79
          incr_6(78) -> 80
          incr_6(101) -> 95
          incr_7(79) -> 92
          incr_7(85) -> 86
          incr_7(89) -> 87
          incr_7(95) -> 94
          incr_7(106) -> 102
          incr_7(107) -> 109
          incr_8(102) -> 100
          incr_8(109) -> 111
          mark_0(1) -> 5
          mark_0(5) -> 5
          mark_0(6) -> 5
          mark_0(7) -> 5
          mark_0(8) -> 5
          mark_0(10) -> 5
          mark_1(18) -> 2
          mark_1(18) -> 30
          mark_1(23) -> 3
          mark_1(23) -> 23
          mark_1(24) -> 4
          mark_1(24) -> 24
          mark_1(25) -> 9
          mark_1(25) -> 25
          mark_1(26) -> 12
          mark_1(26) -> 26
          mark_1(27) -> 13
          mark_1(27) -> 27
          mark_1(28) -> 14
          mark_1(28) -> 28
          mark_1(29) -> 15
          mark_1(29) -> 29
          mark_1(31) -> 17
          mark_1(31) -> 31
          mark_2(33) -> 32
          mark_3(53) -> 52
          mark_4(56) -> 43
          mark_4(62) -> 61
          mark_5(66) -> 59
          mark_6(82) -> 67
          mark_7(90) -> 87
          nil_0() -> 6
          nil_1() -> 20
          nil_2() -> 42
          oddNs_0() -> 7
          oddNs_1() -> 22
          oddNs_2() -> 37
          oddNs_3() -> 50
          oddNs_4() -> 65
          oddNs_5() -> 77
          oddNs_6() -> 107
          ok_0(1) -> 8
          ok_0(5) -> 8
          ok_0(6) -> 8
          ok_0(7) -> 8
          ok_0(8) -> 8
          ok_0(10) -> 8
          ok_1(19) -> 11
          ok_1(19) -> 30
          ok_1(20) -> 11
          ok_1(20) -> 30
          ok_1(22) -> 11
          ok_1(22) -> 30
          ok_1(23) -> 3
          ok_1(23) -> 23
          ok_1(24) -> 4
          ok_1(24) -> 24
          ok_1(25) -> 9
          ok_1(25) -> 25
          ok_1(26) -> 12
          ok_1(26) -> 26
          ok_1(27) -> 13
          ok_1(27) -> 27
          ok_1(28) -> 14
          ok_1(28) -> 28
          ok_1(29) -> 15
          ok_1(29) -> 29
          ok_1(31) -> 17
          ok_1(31) -> 31
          ok_2(34) -> 40
          ok_2(35) -> 38
          ok_2(37) -> 41
          ok_2(42) -> 38
          ok_3(44) -> 32
          ok_3(45) -> 39
          ok_3(50) -> 49
          ok_3(51) -> 48
          ok_3(54) -> 46
          ok_4(57) -> 47
          ok_4(58) -> 43
          ok_4(63) -> 69
          ok_4(65) -> 71
          ok_5(73) -> 70
          ok_5(77) -> 76
          ok_5(77) -> 101
          ok_5(78) -> 61
          ok_5(81) -> 74
          ok_5(81) -> 96
          ok_6(79) -> 75
          ok_6(79) -> 95
          ok_6(80) -> 59
          ok_6(85) -> 72
          ok_6(104) -> 93
          ok_6(105) -> 103
          ok_6(107) -> 106
          ok_7(86) -> 67
          ok_7(92) -> 94
          ok_7(108) -> 99
          ok_7(109) -> 102
          ok_7(110) -> 87
          ok_8(111) -> 100
          ok_8(113) -> 97
          pair_0(1,1) -> 9
          pair_0(1,5) -> 9
          pair_0(1,6) -> 9
          pair_0(1,7) -> 9
          pair_0(1,8) -> 9
          pair_0(1,10) -> 9
          pair_0(5,1) -> 9
          pair_0(5,5) -> 9
          pair_0(5,6) -> 9
          pair_0(5,7) -> 9
          pair_0(5,8) -> 9
          pair_0(5,10) -> 9
          pair_0(6,1) -> 9
          pair_0(6,5) -> 9
          pair_0(6,6) -> 9
          pair_0(6,7) -> 9
          pair_0(6,8) -> 9
          pair_0(6,10) -> 9
          pair_0(7,1) -> 9
          pair_0(7,5) -> 9
          pair_0(7,6) -> 9
          pair_0(7,7) -> 9
          pair_0(7,8) -> 9
          pair_0(7,10) -> 9
          pair_0(8,1) -> 9
          pair_0(8,5) -> 9
          pair_0(8,6) -> 9
          pair_0(8,7) -> 9
          pair_0(8,8) -> 9
          pair_0(8,10) -> 9
          pair_0(10,1) -> 9
          pair_0(10,5) -> 9
          pair_0(10,6) -> 9
          pair_0(10,7) -> 9
          pair_0(10,8) -> 9
          pair_0(10,10) -> 9
          pair_1(1,1) -> 25
          pair_1(1,5) -> 25
          pair_1(1,6) -> 25
          pair_1(1,7) -> 25
          pair_1(1,8) -> 25
          pair_1(1,10) -> 25
          pair_1(5,1) -> 25
          pair_1(5,5) -> 25
          pair_1(5,6) -> 25
          pair_1(5,7) -> 25
          pair_1(5,8) -> 25
          pair_1(5,10) -> 25
          pair_1(6,1) -> 25
          pair_1(6,5) -> 25
          pair_1(6,6) -> 25
          pair_1(6,7) -> 25
          pair_1(6,8) -> 25
          pair_1(6,10) -> 25
          pair_1(7,1) -> 25
          pair_1(7,5) -> 25
          pair_1(7,6) -> 25
          pair_1(7,7) -> 25
          pair_1(7,8) -> 25
          pair_1(7,10) -> 25
          pair_1(8,1) -> 25
          pair_1(8,5) -> 25
          pair_1(8,6) -> 25
          pair_1(8,7) -> 25
          pair_1(8,8) -> 25
          pair_1(8,10) -> 25
          pair_1(10,1) -> 25
          pair_1(10,5) -> 25
          pair_1(10,6) -> 25
          pair_1(10,7) -> 25
          pair_1(10,8) -> 25
          pair_1(10,10) -> 25
          pairNs_0() -> 10
          pairNs_1() -> 19
          pairNs_2() -> 34
          pairNs_3() -> 51
          proper_0(1) -> 11
          proper_0(5) -> 11
          proper_0(6) -> 11
          proper_0(7) -> 11
          proper_0(8) -> 11
          proper_0(10) -> 11
          proper_1(1) -> 30
          proper_1(5) -> 30
          proper_1(6) -> 30
          proper_1(7) -> 30
          proper_1(8) -> 30
          proper_1(10) -> 30
          proper_2(18) -> 32
          proper_2(19) -> 40
          proper_2(20) -> 38
          proper_2(21) -> 39
          proper_2(22) -> 41
          proper_3(33) -> 43
          proper_3(34) -> 48
          proper_3(35) -> 46
          proper_3(36) -> 47
          proper_3(37) -> 49
          proper_4(50) -> 71
          proper_4(54) -> 69
          proper_4(55) -> 70
          proper_4(56) -> 59
          proper_5(53) -> 61
          proper_5(63) -> 74
          proper_5(64) -> 75
          proper_5(65) -> 76
          proper_5(66) -> 67
          proper_6(62) -> 72
          proper_6(65) -> 101
          proper_6(82) -> 87
          proper_7(63) -> 96
          proper_7(73) -> 95
          proper_7(77) -> 106
          proper_7(83) -> 93
          proper_7(84) -> 94
          proper_7(90) -> 97
          proper_8(79) -> 102
          proper_8(81) -> 103
          proper_8(91) -> 99
          proper_8(92) -> 100
          repItems_0(1) -> 12
          repItems_0(5) -> 12
          repItems_0(6) -> 12
          repItems_0(7) -> 12
          repItems_0(8) -> 12
          repItems_0(10) -> 12
          repItems_1(1) -> 26
          repItems_1(5) -> 26
          repItems_1(6) -> 26
          repItems_1(7) -> 26
          repItems_1(8) -> 26
          repItems_1(10) -> 26
          s_0(1) -> 13
          s_0(5) -> 13
          s_0(6) -> 13
          s_0(7) -> 13
          s_0(8) -> 13
          s_0(10) -> 13
          s_1(1) -> 27
          s_1(5) -> 27
          s_1(6) -> 27
          s_1(7) -> 27
          s_1(8) -> 27
          s_1(10) -> 27
          s_6(63) -> 83
          s_6(81) -> 104
          s_7(81) -> 91
          s_7(96) -> 93
          s_7(98) -> 112
          s_7(105) -> 108
          s_8(103) -> 99
          s_8(116) -> 115
          tail_0(1) -> 14
          tail_0(5) -> 14
          tail_0(6) -> 14
          tail_0(7) -> 14
          tail_0(8) -> 14
          tail_0(10) -> 14
          tail_1(1) -> 28
          tail_1(5) -> 28
          tail_1(6) -> 28
          tail_1(7) -> 28
          tail_1(8) -> 28
          tail_1(10) -> 28
          take_0(1,1) -> 15
          take_0(1,5) -> 15
          take_0(1,6) -> 15
          take_0(1,7) -> 15
          take_0(1,8) -> 15
          take_0(1,10) -> 15
          take_0(5,1) -> 15
          take_0(5,5) -> 15
          take_0(5,6) -> 15
          take_0(5,7) -> 15
          take_0(5,8) -> 15
          take_0(5,10) -> 15
          take_0(6,1) -> 15
          take_0(6,5) -> 15
          take_0(6,6) -> 15
          take_0(6,7) -> 15
          take_0(6,8) -> 15
          take_0(6,10) -> 15
          take_0(7,1) -> 15
          take_0(7,5) -> 15
          take_0(7,6) -> 15
          take_0(7,7) -> 15
          take_0(7,8) -> 15
          take_0(7,10) -> 15
          take_0(8,1) -> 15
          take_0(8,5) -> 15
          take_0(8,6) -> 15
          take_0(8,7) -> 15
          take_0(8,8) -> 15
          take_0(8,10) -> 15
          take_0(10,1) -> 15
          take_0(10,5) -> 15
          take_0(10,6) -> 15
          take_0(10,7) -> 15
          take_0(10,8) -> 15
          take_0(10,10) -> 15
          take_1(1,1) -> 29
          take_1(1,5) -> 29
          take_1(1,6) -> 29
          take_1(1,7) -> 29
          take_1(1,8) -> 29
          take_1(1,10) -> 29
          take_1(5,1) -> 29
          take_1(5,5) -> 29
          take_1(5,6) -> 29
          take_1(5,7) -> 29
          take_1(5,8) -> 29
          take_1(5,10) -> 29
          take_1(6,1) -> 29
          take_1(6,5) -> 29
          take_1(6,6) -> 29
          take_1(6,7) -> 29
          take_1(6,8) -> 29
          take_1(6,10) -> 29
          take_1(7,1) -> 29
          take_1(7,5) -> 29
          take_1(7,6) -> 29
          take_1(7,7) -> 29
          take_1(7,8) -> 29
          take_1(7,10) -> 29
          take_1(8,1) -> 29
          take_1(8,5) -> 29
          take_1(8,6) -> 29
          take_1(8,7) -> 29
          take_1(8,8) -> 29
          take_1(8,10) -> 29
          take_1(10,1) -> 29
          take_1(10,5) -> 29
          take_1(10,6) -> 29
          take_1(10,7) -> 29
          take_1(10,8) -> 29
          take_1(10,10) -> 29
          top_0(1) -> 16
          top_0(5) -> 16
          top_0(6) -> 16
          top_0(7) -> 16
          top_0(8) -> 16
          top_0(10) -> 16
          top_1(30) -> 16
          top_2(32) -> 16
          top_3(43) -> 16
          top_4(59) -> 16
          top_5(67) -> 16
          top_6(87) -> 16
          top_7(97) -> 16
          top_8(114) -> 16
          zip_0(1,1) -> 17
          zip_0(1,5) -> 17
          zip_0(1,6) -> 17
          zip_0(1,7) -> 17
          zip_0(1,8) -> 17
          zip_0(1,10) -> 17
          zip_0(5,1) -> 17
          zip_0(5,5) -> 17
          zip_0(5,6) -> 17
          zip_0(5,7) -> 17
          zip_0(5,8) -> 17
          zip_0(5,10) -> 17
          zip_0(6,1) -> 17
          zip_0(6,5) -> 17
          zip_0(6,6) -> 17
          zip_0(6,7) -> 17
          zip_0(6,8) -> 17
          zip_0(6,10) -> 17
          zip_0(7,1) -> 17
          zip_0(7,5) -> 17
          zip_0(7,6) -> 17
          zip_0(7,7) -> 17
          zip_0(7,8) -> 17
          zip_0(7,10) -> 17
          zip_0(8,1) -> 17
          zip_0(8,5) -> 17
          zip_0(8,6) -> 17
          zip_0(8,7) -> 17
          zip_0(8,8) -> 17
          zip_0(8,10) -> 17
          zip_0(10,1) -> 17
          zip_0(10,5) -> 17
          zip_0(10,6) -> 17
          zip_0(10,7) -> 17
          zip_0(10,8) -> 17
          zip_0(10,10) -> 17
          zip_1(1,1) -> 31
          zip_1(1,5) -> 31
          zip_1(1,6) -> 31
          zip_1(1,7) -> 31
          zip_1(1,8) -> 31
          zip_1(1,10) -> 31
          zip_1(5,1) -> 31
          zip_1(5,5) -> 31
          zip_1(5,6) -> 31
          zip_1(5,7) -> 31
          zip_1(5,8) -> 31
          zip_1(5,10) -> 31
          zip_1(6,1) -> 31
          zip_1(6,5) -> 31
          zip_1(6,6) -> 31
          zip_1(6,7) -> 31
          zip_1(6,8) -> 31
          zip_1(6,10) -> 31
          zip_1(7,1) -> 31
          zip_1(7,5) -> 31
          zip_1(7,6) -> 31
          zip_1(7,7) -> 31
          zip_1(7,8) -> 31
          zip_1(7,10) -> 31
          zip_1(8,1) -> 31
          zip_1(8,5) -> 31
          zip_1(8,6) -> 31
          zip_1(8,7) -> 31
          zip_1(8,8) -> 31
          zip_1(8,10) -> 31
          zip_1(10,1) -> 31
          zip_1(10,5) -> 31
          zip_1(10,6) -> 31
          zip_1(10,7) -> 31
          zip_1(10,8) -> 31
          zip_1(10,10) -> 31
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(incr(X)) -> incr(active(X))
            active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS)))
            active(oddNs()) -> mark(incr(pairNs()))
            active(pairNs()) -> mark(cons(0(),incr(oddNs())))
            active(s(X)) -> s(active(X))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            incr(mark(X)) -> mark(incr(X))
            incr(ok(X)) -> ok(incr(X))
            pair(X1,mark(X2)) -> mark(pair(X1,X2))
            pair(mark(X1),X2) -> mark(pair(X1,X2))
            pair(ok(X1),ok(X2)) -> ok(pair(X1,X2))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(incr(X)) -> incr(proper(X))
            proper(nil()) -> ok(nil())
            proper(oddNs()) -> ok(oddNs())
            proper(pairNs()) -> ok(pairNs())
            proper(s(X)) -> s(proper(X))
            repItems(mark(X)) -> mark(repItems(X))
            repItems(ok(X)) -> ok(repItems(X))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            tail(mark(X)) -> mark(tail(X))
            tail(ok(X)) -> ok(tail(X))
            take(X1,mark(X2)) -> mark(take(X1,X2))
            take(mark(X1),X2) -> mark(take(X1,X2))
            take(ok(X1),ok(X2)) -> ok(take(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
            zip(X1,mark(X2)) -> mark(zip(X1,X2))
            zip(mark(X1),X2) -> mark(zip(X1,X2))
            zip(ok(X1),ok(X2)) -> ok(zip(X1,X2))
        - Signature:
            {active/1,cons/2,incr/1,pair/2,proper/1,repItems/1,s/1,tail/1,take/2,top/1,zip/2} / {0/0,mark/1,nil/0
            ,oddNs/0,ok/1,pairNs/0}
        - Obligation:
             runtime complexity wrt. defined symbols {active,cons,incr,pair,proper,repItems,s,tail,take,top
            ,zip} and constructors {0,mark,nil,oddNs,ok,pairNs}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))