* Step 1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: active(cons(X1,X2)) -> cons(active(X1),X2) active(incr(X)) -> incr(active(X)) active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) active(oddNs()) -> mark(incr(pairNs())) active(pairNs()) -> mark(cons(0(),incr(oddNs()))) active(s(X)) -> s(active(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) pair(X1,mark(X2)) -> mark(pair(X1,X2)) pair(mark(X1),X2) -> mark(pair(X1,X2)) pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) proper(0()) -> ok(0()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(incr(X)) -> incr(proper(X)) proper(nil()) -> ok(nil()) proper(oddNs()) -> ok(oddNs()) proper(pairNs()) -> ok(pairNs()) proper(s(X)) -> s(proper(X)) repItems(mark(X)) -> mark(repItems(X)) repItems(ok(X)) -> ok(repItems(X)) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) take(X1,mark(X2)) -> mark(take(X1,X2)) take(mark(X1),X2) -> mark(take(X1,X2)) take(ok(X1),ok(X2)) -> ok(take(X1,X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) zip(X1,mark(X2)) -> mark(zip(X1,X2)) zip(mark(X1),X2) -> mark(zip(X1,X2)) zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) - Signature: {active/1,cons/2,incr/1,pair/2,proper/1,repItems/1,s/1,tail/1,take/2,top/1,zip/2} / {0/0,mark/1,nil/0 ,oddNs/0,ok/1,pairNs/0} - Obligation: runtime complexity wrt. defined symbols {active,cons,incr,pair,proper,repItems,s,tail,take,top ,zip} and constructors {0,mark,nil,oddNs,ok,pairNs} + Applied Processor: Bounds {initialAutomaton = perSymbol, enrichment = match} + Details: The problem is match-bounded by 9. The enriched problem is compatible with follwoing automaton. 0_0() -> 1 0_1() -> 20 0_2() -> 35 0_3() -> 54 0_4() -> 63 0_5() -> 81 0_6() -> 105 active_0(1) -> 2 active_0(5) -> 2 active_0(6) -> 2 active_0(7) -> 2 active_0(8) -> 2 active_0(10) -> 2 active_1(1) -> 30 active_1(5) -> 30 active_1(6) -> 30 active_1(7) -> 30 active_1(8) -> 30 active_1(10) -> 30 active_2(19) -> 32 active_2(20) -> 32 active_2(22) -> 32 active_3(44) -> 43 active_4(34) -> 52 active_4(35) -> 60 active_4(42) -> 60 active_4(58) -> 59 active_5(51) -> 61 active_5(54) -> 68 active_5(80) -> 67 active_6(63) -> 88 active_6(78) -> 72 active_6(86) -> 87 active_7(81) -> 98 active_7(85) -> 89 active_7(110) -> 97 active_8(104) -> 112 active_8(105) -> 116 active_8(113) -> 114 active_9(108) -> 115 cons_0(1,1) -> 3 cons_0(1,5) -> 3 cons_0(1,6) -> 3 cons_0(1,7) -> 3 cons_0(1,8) -> 3 cons_0(1,10) -> 3 cons_0(5,1) -> 3 cons_0(5,5) -> 3 cons_0(5,6) -> 3 cons_0(5,7) -> 3 cons_0(5,8) -> 3 cons_0(5,10) -> 3 cons_0(6,1) -> 3 cons_0(6,5) -> 3 cons_0(6,6) -> 3 cons_0(6,7) -> 3 cons_0(6,8) -> 3 cons_0(6,10) -> 3 cons_0(7,1) -> 3 cons_0(7,5) -> 3 cons_0(7,6) -> 3 cons_0(7,7) -> 3 cons_0(7,8) -> 3 cons_0(7,10) -> 3 cons_0(8,1) -> 3 cons_0(8,5) -> 3 cons_0(8,6) -> 3 cons_0(8,7) -> 3 cons_0(8,8) -> 3 cons_0(8,10) -> 3 cons_0(10,1) -> 3 cons_0(10,5) -> 3 cons_0(10,6) -> 3 cons_0(10,7) -> 3 cons_0(10,8) -> 3 cons_0(10,10) -> 3 cons_1(1,1) -> 23 cons_1(1,5) -> 23 cons_1(1,6) -> 23 cons_1(1,7) -> 23 cons_1(1,8) -> 23 cons_1(1,10) -> 23 cons_1(5,1) -> 23 cons_1(5,5) -> 23 cons_1(5,6) -> 23 cons_1(5,7) -> 23 cons_1(5,8) -> 23 cons_1(5,10) -> 23 cons_1(6,1) -> 23 cons_1(6,5) -> 23 cons_1(6,6) -> 23 cons_1(6,7) -> 23 cons_1(6,8) -> 23 cons_1(6,10) -> 23 cons_1(7,1) -> 23 cons_1(7,5) -> 23 cons_1(7,6) -> 23 cons_1(7,7) -> 23 cons_1(7,8) -> 23 cons_1(7,10) -> 23 cons_1(8,1) -> 23 cons_1(8,5) -> 23 cons_1(8,6) -> 23 cons_1(8,7) -> 23 cons_1(8,8) -> 23 cons_1(8,10) -> 23 cons_1(10,1) -> 23 cons_1(10,5) -> 23 cons_1(10,6) -> 23 cons_1(10,7) -> 23 cons_1(10,8) -> 23 cons_1(10,10) -> 23 cons_1(20,21) -> 18 cons_2(35,36) -> 33 cons_2(38,39) -> 32 cons_3(35,45) -> 44 cons_3(42,45) -> 44 cons_3(46,47) -> 43 cons_3(54,55) -> 53 cons_4(54,57) -> 58 cons_4(60,45) -> 43 cons_4(63,64) -> 62 cons_4(69,70) -> 61 cons_5(63,73) -> 78 cons_5(68,57) -> 59 cons_5(74,75) -> 72 cons_6(81,79) -> 85 cons_6(83,84) -> 82 cons_6(88,73) -> 72 cons_7(91,92) -> 90 cons_7(93,94) -> 87 cons_7(98,79) -> 89 cons_7(104,92) -> 110 cons_8(99,100) -> 97 cons_8(108,111) -> 113 cons_8(112,92) -> 97 cons_9(115,111) -> 114 incr_0(1) -> 4 incr_0(5) -> 4 incr_0(6) -> 4 incr_0(7) -> 4 incr_0(8) -> 4 incr_0(10) -> 4 incr_1(1) -> 24 incr_1(5) -> 24 incr_1(6) -> 24 incr_1(7) -> 24 incr_1(8) -> 24 incr_1(10) -> 24 incr_1(19) -> 18 incr_1(22) -> 21 incr_2(34) -> 33 incr_2(37) -> 36 incr_2(40) -> 32 incr_2(41) -> 39 incr_3(34) -> 44 incr_3(37) -> 45 incr_3(48) -> 43 incr_3(49) -> 47 incr_3(50) -> 55 incr_4(50) -> 57 incr_4(51) -> 58 incr_4(52) -> 43 incr_4(53) -> 56 incr_4(65) -> 64 incr_4(71) -> 70 incr_5(61) -> 59 incr_5(62) -> 66 incr_5(65) -> 73 incr_5(76) -> 75 incr_6(72) -> 67 incr_6(73) -> 84 incr_6(77) -> 79 incr_6(78) -> 80 incr_6(101) -> 95 incr_7(79) -> 92 incr_7(85) -> 86 incr_7(89) -> 87 incr_7(95) -> 94 incr_7(106) -> 102 incr_7(107) -> 109 incr_8(102) -> 100 incr_8(109) -> 111 mark_0(1) -> 5 mark_0(5) -> 5 mark_0(6) -> 5 mark_0(7) -> 5 mark_0(8) -> 5 mark_0(10) -> 5 mark_1(18) -> 2 mark_1(18) -> 30 mark_1(23) -> 3 mark_1(23) -> 23 mark_1(24) -> 4 mark_1(24) -> 24 mark_1(25) -> 9 mark_1(25) -> 25 mark_1(26) -> 12 mark_1(26) -> 26 mark_1(27) -> 13 mark_1(27) -> 27 mark_1(28) -> 14 mark_1(28) -> 28 mark_1(29) -> 15 mark_1(29) -> 29 mark_1(31) -> 17 mark_1(31) -> 31 mark_2(33) -> 32 mark_3(53) -> 52 mark_4(56) -> 43 mark_4(62) -> 61 mark_5(66) -> 59 mark_6(82) -> 67 mark_7(90) -> 87 nil_0() -> 6 nil_1() -> 20 nil_2() -> 42 oddNs_0() -> 7 oddNs_1() -> 22 oddNs_2() -> 37 oddNs_3() -> 50 oddNs_4() -> 65 oddNs_5() -> 77 oddNs_6() -> 107 ok_0(1) -> 8 ok_0(5) -> 8 ok_0(6) -> 8 ok_0(7) -> 8 ok_0(8) -> 8 ok_0(10) -> 8 ok_1(19) -> 11 ok_1(19) -> 30 ok_1(20) -> 11 ok_1(20) -> 30 ok_1(22) -> 11 ok_1(22) -> 30 ok_1(23) -> 3 ok_1(23) -> 23 ok_1(24) -> 4 ok_1(24) -> 24 ok_1(25) -> 9 ok_1(25) -> 25 ok_1(26) -> 12 ok_1(26) -> 26 ok_1(27) -> 13 ok_1(27) -> 27 ok_1(28) -> 14 ok_1(28) -> 28 ok_1(29) -> 15 ok_1(29) -> 29 ok_1(31) -> 17 ok_1(31) -> 31 ok_2(34) -> 40 ok_2(35) -> 38 ok_2(37) -> 41 ok_2(42) -> 38 ok_3(44) -> 32 ok_3(45) -> 39 ok_3(50) -> 49 ok_3(51) -> 48 ok_3(54) -> 46 ok_4(57) -> 47 ok_4(58) -> 43 ok_4(63) -> 69 ok_4(65) -> 71 ok_5(73) -> 70 ok_5(77) -> 76 ok_5(77) -> 101 ok_5(78) -> 61 ok_5(81) -> 74 ok_5(81) -> 96 ok_6(79) -> 75 ok_6(79) -> 95 ok_6(80) -> 59 ok_6(85) -> 72 ok_6(104) -> 93 ok_6(105) -> 103 ok_6(107) -> 106 ok_7(86) -> 67 ok_7(92) -> 94 ok_7(108) -> 99 ok_7(109) -> 102 ok_7(110) -> 87 ok_8(111) -> 100 ok_8(113) -> 97 pair_0(1,1) -> 9 pair_0(1,5) -> 9 pair_0(1,6) -> 9 pair_0(1,7) -> 9 pair_0(1,8) -> 9 pair_0(1,10) -> 9 pair_0(5,1) -> 9 pair_0(5,5) -> 9 pair_0(5,6) -> 9 pair_0(5,7) -> 9 pair_0(5,8) -> 9 pair_0(5,10) -> 9 pair_0(6,1) -> 9 pair_0(6,5) -> 9 pair_0(6,6) -> 9 pair_0(6,7) -> 9 pair_0(6,8) -> 9 pair_0(6,10) -> 9 pair_0(7,1) -> 9 pair_0(7,5) -> 9 pair_0(7,6) -> 9 pair_0(7,7) -> 9 pair_0(7,8) -> 9 pair_0(7,10) -> 9 pair_0(8,1) -> 9 pair_0(8,5) -> 9 pair_0(8,6) -> 9 pair_0(8,7) -> 9 pair_0(8,8) -> 9 pair_0(8,10) -> 9 pair_0(10,1) -> 9 pair_0(10,5) -> 9 pair_0(10,6) -> 9 pair_0(10,7) -> 9 pair_0(10,8) -> 9 pair_0(10,10) -> 9 pair_1(1,1) -> 25 pair_1(1,5) -> 25 pair_1(1,6) -> 25 pair_1(1,7) -> 25 pair_1(1,8) -> 25 pair_1(1,10) -> 25 pair_1(5,1) -> 25 pair_1(5,5) -> 25 pair_1(5,6) -> 25 pair_1(5,7) -> 25 pair_1(5,8) -> 25 pair_1(5,10) -> 25 pair_1(6,1) -> 25 pair_1(6,5) -> 25 pair_1(6,6) -> 25 pair_1(6,7) -> 25 pair_1(6,8) -> 25 pair_1(6,10) -> 25 pair_1(7,1) -> 25 pair_1(7,5) -> 25 pair_1(7,6) -> 25 pair_1(7,7) -> 25 pair_1(7,8) -> 25 pair_1(7,10) -> 25 pair_1(8,1) -> 25 pair_1(8,5) -> 25 pair_1(8,6) -> 25 pair_1(8,7) -> 25 pair_1(8,8) -> 25 pair_1(8,10) -> 25 pair_1(10,1) -> 25 pair_1(10,5) -> 25 pair_1(10,6) -> 25 pair_1(10,7) -> 25 pair_1(10,8) -> 25 pair_1(10,10) -> 25 pairNs_0() -> 10 pairNs_1() -> 19 pairNs_2() -> 34 pairNs_3() -> 51 proper_0(1) -> 11 proper_0(5) -> 11 proper_0(6) -> 11 proper_0(7) -> 11 proper_0(8) -> 11 proper_0(10) -> 11 proper_1(1) -> 30 proper_1(5) -> 30 proper_1(6) -> 30 proper_1(7) -> 30 proper_1(8) -> 30 proper_1(10) -> 30 proper_2(18) -> 32 proper_2(19) -> 40 proper_2(20) -> 38 proper_2(21) -> 39 proper_2(22) -> 41 proper_3(33) -> 43 proper_3(34) -> 48 proper_3(35) -> 46 proper_3(36) -> 47 proper_3(37) -> 49 proper_4(50) -> 71 proper_4(54) -> 69 proper_4(55) -> 70 proper_4(56) -> 59 proper_5(53) -> 61 proper_5(63) -> 74 proper_5(64) -> 75 proper_5(65) -> 76 proper_5(66) -> 67 proper_6(62) -> 72 proper_6(65) -> 101 proper_6(82) -> 87 proper_7(63) -> 96 proper_7(73) -> 95 proper_7(77) -> 106 proper_7(83) -> 93 proper_7(84) -> 94 proper_7(90) -> 97 proper_8(79) -> 102 proper_8(81) -> 103 proper_8(91) -> 99 proper_8(92) -> 100 repItems_0(1) -> 12 repItems_0(5) -> 12 repItems_0(6) -> 12 repItems_0(7) -> 12 repItems_0(8) -> 12 repItems_0(10) -> 12 repItems_1(1) -> 26 repItems_1(5) -> 26 repItems_1(6) -> 26 repItems_1(7) -> 26 repItems_1(8) -> 26 repItems_1(10) -> 26 s_0(1) -> 13 s_0(5) -> 13 s_0(6) -> 13 s_0(7) -> 13 s_0(8) -> 13 s_0(10) -> 13 s_1(1) -> 27 s_1(5) -> 27 s_1(6) -> 27 s_1(7) -> 27 s_1(8) -> 27 s_1(10) -> 27 s_6(63) -> 83 s_6(81) -> 104 s_7(81) -> 91 s_7(96) -> 93 s_7(98) -> 112 s_7(105) -> 108 s_8(103) -> 99 s_8(116) -> 115 tail_0(1) -> 14 tail_0(5) -> 14 tail_0(6) -> 14 tail_0(7) -> 14 tail_0(8) -> 14 tail_0(10) -> 14 tail_1(1) -> 28 tail_1(5) -> 28 tail_1(6) -> 28 tail_1(7) -> 28 tail_1(8) -> 28 tail_1(10) -> 28 take_0(1,1) -> 15 take_0(1,5) -> 15 take_0(1,6) -> 15 take_0(1,7) -> 15 take_0(1,8) -> 15 take_0(1,10) -> 15 take_0(5,1) -> 15 take_0(5,5) -> 15 take_0(5,6) -> 15 take_0(5,7) -> 15 take_0(5,8) -> 15 take_0(5,10) -> 15 take_0(6,1) -> 15 take_0(6,5) -> 15 take_0(6,6) -> 15 take_0(6,7) -> 15 take_0(6,8) -> 15 take_0(6,10) -> 15 take_0(7,1) -> 15 take_0(7,5) -> 15 take_0(7,6) -> 15 take_0(7,7) -> 15 take_0(7,8) -> 15 take_0(7,10) -> 15 take_0(8,1) -> 15 take_0(8,5) -> 15 take_0(8,6) -> 15 take_0(8,7) -> 15 take_0(8,8) -> 15 take_0(8,10) -> 15 take_0(10,1) -> 15 take_0(10,5) -> 15 take_0(10,6) -> 15 take_0(10,7) -> 15 take_0(10,8) -> 15 take_0(10,10) -> 15 take_1(1,1) -> 29 take_1(1,5) -> 29 take_1(1,6) -> 29 take_1(1,7) -> 29 take_1(1,8) -> 29 take_1(1,10) -> 29 take_1(5,1) -> 29 take_1(5,5) -> 29 take_1(5,6) -> 29 take_1(5,7) -> 29 take_1(5,8) -> 29 take_1(5,10) -> 29 take_1(6,1) -> 29 take_1(6,5) -> 29 take_1(6,6) -> 29 take_1(6,7) -> 29 take_1(6,8) -> 29 take_1(6,10) -> 29 take_1(7,1) -> 29 take_1(7,5) -> 29 take_1(7,6) -> 29 take_1(7,7) -> 29 take_1(7,8) -> 29 take_1(7,10) -> 29 take_1(8,1) -> 29 take_1(8,5) -> 29 take_1(8,6) -> 29 take_1(8,7) -> 29 take_1(8,8) -> 29 take_1(8,10) -> 29 take_1(10,1) -> 29 take_1(10,5) -> 29 take_1(10,6) -> 29 take_1(10,7) -> 29 take_1(10,8) -> 29 take_1(10,10) -> 29 top_0(1) -> 16 top_0(5) -> 16 top_0(6) -> 16 top_0(7) -> 16 top_0(8) -> 16 top_0(10) -> 16 top_1(30) -> 16 top_2(32) -> 16 top_3(43) -> 16 top_4(59) -> 16 top_5(67) -> 16 top_6(87) -> 16 top_7(97) -> 16 top_8(114) -> 16 zip_0(1,1) -> 17 zip_0(1,5) -> 17 zip_0(1,6) -> 17 zip_0(1,7) -> 17 zip_0(1,8) -> 17 zip_0(1,10) -> 17 zip_0(5,1) -> 17 zip_0(5,5) -> 17 zip_0(5,6) -> 17 zip_0(5,7) -> 17 zip_0(5,8) -> 17 zip_0(5,10) -> 17 zip_0(6,1) -> 17 zip_0(6,5) -> 17 zip_0(6,6) -> 17 zip_0(6,7) -> 17 zip_0(6,8) -> 17 zip_0(6,10) -> 17 zip_0(7,1) -> 17 zip_0(7,5) -> 17 zip_0(7,6) -> 17 zip_0(7,7) -> 17 zip_0(7,8) -> 17 zip_0(7,10) -> 17 zip_0(8,1) -> 17 zip_0(8,5) -> 17 zip_0(8,6) -> 17 zip_0(8,7) -> 17 zip_0(8,8) -> 17 zip_0(8,10) -> 17 zip_0(10,1) -> 17 zip_0(10,5) -> 17 zip_0(10,6) -> 17 zip_0(10,7) -> 17 zip_0(10,8) -> 17 zip_0(10,10) -> 17 zip_1(1,1) -> 31 zip_1(1,5) -> 31 zip_1(1,6) -> 31 zip_1(1,7) -> 31 zip_1(1,8) -> 31 zip_1(1,10) -> 31 zip_1(5,1) -> 31 zip_1(5,5) -> 31 zip_1(5,6) -> 31 zip_1(5,7) -> 31 zip_1(5,8) -> 31 zip_1(5,10) -> 31 zip_1(6,1) -> 31 zip_1(6,5) -> 31 zip_1(6,6) -> 31 zip_1(6,7) -> 31 zip_1(6,8) -> 31 zip_1(6,10) -> 31 zip_1(7,1) -> 31 zip_1(7,5) -> 31 zip_1(7,6) -> 31 zip_1(7,7) -> 31 zip_1(7,8) -> 31 zip_1(7,10) -> 31 zip_1(8,1) -> 31 zip_1(8,5) -> 31 zip_1(8,6) -> 31 zip_1(8,7) -> 31 zip_1(8,8) -> 31 zip_1(8,10) -> 31 zip_1(10,1) -> 31 zip_1(10,5) -> 31 zip_1(10,6) -> 31 zip_1(10,7) -> 31 zip_1(10,8) -> 31 zip_1(10,10) -> 31 * Step 2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: active(cons(X1,X2)) -> cons(active(X1),X2) active(incr(X)) -> incr(active(X)) active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) active(oddNs()) -> mark(incr(pairNs())) active(pairNs()) -> mark(cons(0(),incr(oddNs()))) active(s(X)) -> s(active(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) pair(X1,mark(X2)) -> mark(pair(X1,X2)) pair(mark(X1),X2) -> mark(pair(X1,X2)) pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) proper(0()) -> ok(0()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(incr(X)) -> incr(proper(X)) proper(nil()) -> ok(nil()) proper(oddNs()) -> ok(oddNs()) proper(pairNs()) -> ok(pairNs()) proper(s(X)) -> s(proper(X)) repItems(mark(X)) -> mark(repItems(X)) repItems(ok(X)) -> ok(repItems(X)) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) take(X1,mark(X2)) -> mark(take(X1,X2)) take(mark(X1),X2) -> mark(take(X1,X2)) take(ok(X1),ok(X2)) -> ok(take(X1,X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) zip(X1,mark(X2)) -> mark(zip(X1,X2)) zip(mark(X1),X2) -> mark(zip(X1,X2)) zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) - Signature: {active/1,cons/2,incr/1,pair/2,proper/1,repItems/1,s/1,tail/1,take/2,top/1,zip/2} / {0/0,mark/1,nil/0 ,oddNs/0,ok/1,pairNs/0} - Obligation: runtime complexity wrt. defined symbols {active,cons,incr,pair,proper,repItems,s,tail,take,top ,zip} and constructors {0,mark,nil,oddNs,ok,pairNs} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))